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Abstract

In this document we provide the following additional contributions to our CVPR 2018 main paper:

o We provide side-by-side comparisons of ImageNet results for ResNeXt architectures when trained with RELU and
LEAKY RELU activations and mutually replaced activations, respectively.

o We provide derivations of the gradients computed by INPLACE-ABN [ and INPLACE-ABN I1I.

1. Validation of LEAKY RELU vs. RELU

We compared the validation accuracy obtained when replacing RELU with LEAKY RELU in a ResNeXt—-101 trained
with RELU. We also considered the opposite case, replacing LEAKY RELU with RELU in a LEAKY RELU-trained network
(see Table 1). Our results are in line with [2], and never differ by more than a single point per training except for the 3202
center crop evaluation top-1 results, probably also due to non-deterministic training behaviour.

activation 2242 center 2242 10-crops 3207 center
Network
training validation top-1 top-5 top-1 top-5 top-1 top-5
ResNeXt-101 RELU RELU 7774 9386 7921 94.67 79.17 94.67
ResNeXt-101 RELU LEAKY RELU 76.88 9342 7874 9446 78.37 94.25

ResNeXt-101 LEAKY RELU LEAKY RELU 77.04 93.50 78.72 9447 7792 9428
ResNeXt-101 LEAKY RELU RELU 76.81 9353 7846 9438 77.84 94.20

Table 1. Imagenet validation set results using ResNeXt-101 and RELU/LEAKY RELU exchanged activation functions during training
and validation.



2. Derivation of Gradient g—L

We follow the gradient derivations as provided in the original batch normalization paper [ 1] and rewrite them as a function
of z, starting with generally required derivatives for INPLACE-ABN I & II and particular ones of INPLACE-ABN II.
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For INPLACE-ABN II, we write gradients 2 o L and g—g as functions of y instead of & in the following way:
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