In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder Mapillary Research

research@mapillary.com

Abstract

In this document we provide the following additional contributions to our CVPR 2018 main paper:

- We provide side-by-side comparisons of ImageNet results for ResNeXt architectures when trained with RELU and LEAKY RELU activations and mutually replaced activations, respectively.
- We provide derivations of the gradients computed by INPLACE-ABN I and INPLACE-ABN II.

1. Validation of LEAKY RELU vs. RELU

We compared the validation accuracy obtained when replacing RELU with LEAKY RELU in a ResNeXt-101 trained with RELU. We also considered the opposite case, replacing LEAKY RELU with RELU in a LEAKY RELU-trained network (see Table 1). Our results are in line with [2], and never differ by more than a single point per training except for the 320² center crop evaluation top-1 results, probably also due to non-deterministic training behaviour.

Network	activation		224^2 center		224 ² 10-crops		320^2 center	
	training	validation	top-1	top-5	top-1	top-5	top-1	top-5
ResNeXt-101	RELU	RELU	77.74	93.86	79.21	94.67	79.17	94.67
ResNeXt-101	RELU	Leaky ReLU	76.88	93.42	78.74	94.46	78.37	94.25
ResNeXt-101	LEAKY RELU	LEAKY RELU	77.04	93.50	78.72	94.47	77.92	94.28
ResNeXt-101	LEAKY RELU	RELU	76.81	93.53	78.46	94.38	77.84	94.20

Table 1. Imagenet validation set results using ResNeXt-101 and RELU/LEAKY RELU exchanged activation functions during training and validation.

2. Derivation of Gradient $\frac{\partial L}{\partial x}$

We follow the gradient derivations as provided in the original batch normalization paper [1] and rewrite them as a function of \hat{x} , starting with generally required derivatives for INPLACE-ABN I & II and particular ones of INPLACE-ABN II.

$$\begin{split} \frac{\partial y_j}{\partial \gamma} &= \hat{x}_j \,, & \frac{\partial y_j}{\partial \beta} = 1 \,, & \frac{\partial y_j}{\partial \hat{x}_j} = \gamma \,, \\ \frac{\partial L}{\partial \gamma} &= \sum_{j=1}^m \frac{\partial L}{\partial y_j} \frac{\partial y_j}{\partial \gamma} = \sum_{j=1}^m \frac{\partial L}{\partial y_j} \hat{x}_j \,, & \frac{\partial L}{\partial \beta} = \sum_{j=1}^m \frac{\partial L}{\partial y_j} \frac{\partial y_j}{\partial \beta} = \sum_{j=1}^m \frac{\partial L}{\partial y_j} \,, & \frac{\partial L}{\partial \hat{x}_j} = \frac{\partial L}{\partial y_j} \frac{\partial y_j}{\partial \hat{x}_j} = \frac{\partial L}{\partial y_j} \gamma \,, \\ \frac{\partial \hat{x}_j}{\partial \sigma_B^2} &= -\frac{1}{2(\sigma_B^2 + \epsilon)} \frac{x_j - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} = -\frac{\hat{x}_j}{2(\sigma_B^2 + \epsilon)} \,, & \frac{\partial \hat{x}_j}{\partial \mu_B} = -\frac{1}{\sqrt{\sigma_B^2 + \epsilon}} \,, \\ \frac{\partial L}{\partial \sigma_B^2} &= \sum_{j=1}^m \frac{\partial L}{\partial \hat{x}_j} \frac{\partial \hat{x}_j}{\partial \sigma_B^2} = -\frac{\gamma}{2(\sigma_B^2 + \epsilon)} \sum_{j=1}^m \frac{\partial L}{\partial y_j} \hat{x}_j = -\frac{\gamma}{2(\sigma_B^2 + \epsilon)} \frac{\partial L}{\partial \gamma} \,, \\ \frac{\partial L}{\partial \mu_B} &= \sum_{j=1}^m \frac{\partial L}{\partial \hat{x}_j} \frac{\partial \hat{x}_j}{\partial \mu_B} = -\frac{\gamma}{\sqrt{\sigma_B^2 + \epsilon}} \sum_{j=1}^m \frac{\partial L}{\partial y_j} = -\frac{\gamma}{\sqrt{\sigma_B^2 + \epsilon}} \frac{\partial L}{\partial \beta} \,, \\ \frac{\partial \sigma_B^2}{\partial x_i} &= \frac{2(x_i - \mu_B)}{m} \,, & \frac{\partial \mu_B}{\partial x_i} = \frac{1}{m} \,, & \frac{\partial \hat{x}_i}{\partial x_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} \,, \\ \frac{\partial L}{\partial x_i} &= \frac{\partial L}{\partial \hat{x}_i} \frac{\partial \hat{x}_i}{\partial x_i} + \frac{\partial L}{\partial \sigma_B^2} \frac{\partial \sigma_B^2}{\partial x_i} + \frac{\partial L}{\partial \mu_B} \frac{\partial \mu_B}{\partial x_i} = \left(\frac{\partial L}{\partial y_i} - \frac{1}{m} \frac{\partial L}{\partial \gamma} \hat{x}_i - \frac{1}{m} \frac{\partial L}{\partial \beta}\right) \frac{\gamma}{\sqrt{\sigma_B^2 + \epsilon}} \,. \end{split}$$

For INPLACE-ABN II, we write gradients $\frac{\partial L}{\partial \gamma}$ and $\frac{\partial L}{\partial x}$ as functions of y instead of \hat{x} in the following way:

$$\frac{\partial L}{\partial \gamma} = \sum_{j=1}^{m} \frac{\partial L}{\partial y_j} \hat{x}_j = \sum_{j=1}^{m} \frac{\partial L}{\partial y_j} \frac{y_j - \beta}{\gamma} = \frac{1}{\gamma} \sum_{j=1}^{m} \frac{\partial L}{\partial y_j} y_j - \frac{\beta}{\gamma} \sum_{j=1}^{m} \frac{\partial L}{\partial y_j} = \frac{1}{\gamma} \left[\sum_{j=1}^{m} \frac{\partial L}{\partial y_j} y_j - \beta \frac{\partial L}{\partial \beta} \right],$$

$$\frac{\partial L}{\partial x_i} = \left(\frac{\partial L}{\partial y_i} - \frac{1}{m}\frac{\partial L}{\partial \gamma}\hat{x}_i - \frac{1}{m}\frac{\partial L}{\partial \beta}\right)\frac{\gamma}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \\ = \left(\frac{\partial L}{\partial y_i} - \frac{1}{m}\frac{\partial L}{\partial \gamma}\frac{y_i - \beta}{\gamma} - \frac{1}{m}\frac{\partial L}{\partial \beta}\right)\frac{\gamma}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \\ = \left[\frac{\partial L}{\partial y_i} - \frac{1}{\gamma m}\frac{\partial L}{\partial \gamma}y_i - \frac{1}{m}\left(\frac{\partial L}{\partial \beta} + \frac{\beta}{\gamma}\frac{\partial L}{\partial \gamma}\right)\right]\frac{\gamma}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}.$$

References

- [1] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. *CoRR*, abs/1502.03167, 2015. 2
- B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified activations in convolutional network. *CoRR*, abs/1505.00853, 2015.