
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder
Mapillary Research

research@mapillary.com

Abstract

In this document we provide the following additional contributions to our CVPR 2018 main paper:

• We provide side-by-side comparisons of ImageNet results for ResNeXt architectures when trained with RELU and
LEAKY RELU activations and mutually replaced activations, respectively.

• We provide derivations of the gradients computed by INPLACE-ABN I and INPLACE-ABN II.

1. Validation of LEAKY RELU vs. RELU
We compared the validation accuracy obtained when replacing RELU with LEAKY RELU in a ResNeXt-101 trained

with RELU. We also considered the opposite case, replacing LEAKY RELU with RELU in a LEAKY RELU-trained network
(see Table 1). Our results are in line with [2], and never differ by more than a single point per training except for the 3202

center crop evaluation top-1 results, probably also due to non-deterministic training behaviour.

Network
activation 2242 center 2242 10-crops 3202 center

training validation top-1 top-5 top-1 top-5 top-1 top-5

ResNeXt-101 RELU RELU 77.74 93.86 79.21 94.67 79.17 94.67
ResNeXt-101 RELU LEAKY RELU 76.88 93.42 78.74 94.46 78.37 94.25

ResNeXt-101 LEAKY RELU LEAKY RELU 77.04 93.50 78.72 94.47 77.92 94.28
ResNeXt-101 LEAKY RELU RELU 76.81 93.53 78.46 94.38 77.84 94.20

Table 1. Imagenet validation set results using ResNeXt-101 and RELU/LEAKY RELU exchanged activation functions during training
and validation.

1



2. Derivation of Gradient ∂L
∂x

We follow the gradient derivations as provided in the original batch normalization paper [1] and rewrite them as a function
of x̂, starting with generally required derivatives for INPLACE-ABN I & II and particular ones of INPLACE-ABN II.

∂yj
∂γ

= x̂j ,
∂yj
∂β

= 1 ,
∂yj
∂x̂j

= γ ,

∂L

∂γ
=

m∑
j=1

∂L

∂yj

∂yj
∂γ

=

m∑
j=1

∂L

∂yj
x̂j ,

∂L

∂β
=

m∑
j=1

∂L

∂yj

∂yj
∂β

=

m∑
j=1

∂L

∂yj
,

∂L

∂x̂j
=
∂L

∂yj

∂yj
∂x̂j

=
∂L

∂yj
γ ,

∂x̂j
∂σ2

B
= − 1

2(σ2
B + ε)

xj − µB√
σ2
B + ε

= − x̂j
2(σ2

B + ε)
,

∂x̂j
∂µB

= − 1√
σ2
B + ε

,

∂L

∂σ2
B
=

m∑
j=1

∂L

∂x̂j

∂x̂j
∂σ2

B
= − γ

2(σ2
B + ε)

m∑
j=1

∂L

∂yj
x̂j = − γ

2(σ2
B + ε)

∂L

∂γ
,

∂L

∂µB
=

m∑
j=1

∂L

∂x̂j

∂x̂j
∂µB

= − γ√
σ2
B + ε

m∑
j=1

∂L

∂yj
= − γ√

σ2
B + ε

∂L

∂β
,

∂σ2
B

∂xi
=

2(xi − µB)

m
,

∂µB

∂xi
=

1

m
,

∂x̂i
∂xi

=
1√
σ2
B + ε

,

∂L

∂xi
=
∂L

∂x̂i

∂x̂i
∂xi

+
∂L

∂σ2
B

∂σ2
B

∂xi
+

∂L

∂µB

∂µB

∂xi
=

(
∂L

∂yi
− 1

m

∂L

∂γ
x̂i −

1

m

∂L

∂β

)
γ√
σ2
B + ε

.

For INPLACE-ABN II, we write gradients ∂L
∂γ and ∂L

∂x as functions of y instead of x̂ in the following way:

∂L

∂γ
=

m∑
j=1

∂L

∂yj
x̂j =

m∑
j=1

∂L

∂yj

yj − β

γ
=

1

γ

m∑
j=1

∂L

∂yj
yj −

β

γ

m∑
j=1

∂L

∂yj
=

1

γ

 m∑
j=1

∂L

∂yj
yj − β

∂L

∂β

 ,
∂L

∂xi
=

(
∂L

∂yi
− 1

m

∂L

∂γ
x̂i −

1

m

∂L

∂β

)
γ√
σ2
B + ε

=

(
∂L

∂yi
− 1

m

∂L

∂γ

yi − β

γ
− 1

m

∂L

∂β

)
γ√
σ2
B + ε

=

[
∂L

∂yi
− 1

γm

∂L

∂γ
yi −

1

m

(
∂L

∂β
+
β

γ

∂L

∂γ

)]
γ√
σ2
B + ε

.

References
[1] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR,

abs/1502.03167, 2015. 2
[2] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified activations in convolutional network. CoRR, abs/1505.00853,

2015. 1


