Learning Multi-Object Tracking and Segmentation from Automatic Annotations

Conf. on Computer Vision and Pattern Recognition (CVPR) 2020 /
By Lorenzo Porzi, Markus Hofinger, Idoia Ruiz, Joan Serrat, Samuel Rota Bulò, Peter Kontschieder

Abstract

In this work we contribute a novel pipeline to automatically generate training data, and to improve over state-of-the-art multi-object tracking and segmentation (MOTS) methods. Our proposed track mining algorithm turns raw street-level videos into high-fidelity MOTS training data, is scalable and overcomes the need of expensive and time-consuming manual annotation approaches. We leverage state-of-the-art instance segmentation results in combination with optical flow predictions, also trained on automatically harvested training data. Our second major contribution is MOTSNet - a deep learning, tracking-by-detection architecture for MOTS - deploying a novel mask-pooling layer for improved object association over time. Training MOTSNet with our automatically extracted data leads to significantly improved sMOTSA scores on the novel KITTIMOTS dataset (+1.9%/+7.5% on cars/pedestrians), and MOTSNet improves by +4.1% over previously best methods on the MOTSChallenge dataset. Our most impressive finding is that we can improve over previous best-performing works, even in complete absence of manually annotated MOTS training data.

Application to KITTI Video

More publications

Mapillary Planet-Scale Depth Dataset

By Manuel López-Antequera, Pau Gargallo, Markus Hofinger, Samuel Rota Bulò, Yubin Kuang, Peter Kontschieder
European Conf. on Computer Vision (ECCV) 2020 /

Improving Optical Flow on a Pyramid Level

By Markus Hofinger, Samuel Rota Bulò, Lorenzo Porzi, Arno Knapitsch, Thomas Pock, Peter Kontschieder
European Conf. on Computer Vision (ECCV) 2020 /

Towards Generalization Across Depth for Monocular 3D Object Detection

By Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Elisa Ricci, Peter Kontschieder
European Conf. on Computer Vision (ECCV) 2020 /

The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale

By Christian Ertler, Jerneja Mislej, Tobias Ollmann, Lorenzo Porzi, Gerhard Neuhold, Yubin Kuang
European Conf. on Computer Vision (ECCV) 2020 /

Modeling the Background for Incremental Learning in Semantic Segmentation

By Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulò, Elisa Ricci, Barbara Caputo
Conf. on Computer Vision and Pattern Recognition (CVPR) 2020 /

Mapillary Street-Level Sequences: A Dataset for Lifelong Place Recognition

By Frederik Warburg, Soren Hauberg, Manuel López-Antequera, Pau Gargallo, Yubin Kuang, Javier Civera
Conf. on Computer Vision and Pattern Recognition (CVPR) 2020 /

Disentangling Monocular 3D Object Detection

By Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Manuel López-Antequera, Peter Kontschieder
International Conf. on Computer Vision (ICCV) 2019 /

Seamless Scene Segmentation

By Lorenzo Porzi, Samuel Rota Bulò, Aleksander Colovic, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

AdaGraph: Unifying Predictive and Continuous Domain Adaptation through Graphs

By Massimiliano Mancini, Samuel Rota Bulò, Barbara Caputo, Elisa Ricci
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

Unsupervised Domain Adaptation using Feature-Whitening and Consensus Loss

By Subhankar Roy, Aliaksandr Siarohin, Enver Sangineto, Samuel Rota Bulò, Nicu Sebe, Elisa Ricci
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

Deep Single Image Camera Calibration with Radial Distortion

By Manuel López-Antequera, Roger Marı́, Pau Gargallo, Yubin Kuang, Javier Gonzalez-Jimenez, Gloria Haro
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

By Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2018 /

Boosting Domain Adaptation by Discovering Latent Domains

By Massimilano Mancini, Lorenzo Porzi, Samuel Rota Bulò, Barbara Caputo, Elisa Ricci
Conf. on Computer Vision and Pattern Recognition (CVPR) 2018 /

Geometry-Aware Network for Non-Rigid Shape Prediction from a Single View

By Albert Pumarola, Antonio Agudo, Lorenzo Porzi, Alberto Sanfeliu, Vincent Lepetit, Francesc Moreno-Noguer
Conf. on Computer Vision and Pattern Recognition (CVPR) 2018 /

The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes

By Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, Peter Kontschieder
International Conf. on Computer Vision (ICCV) 2017 /

AutoDIAL: Automatic DomaIn Alignment Layers

By Fabio Maria Carlucci, Lorenzo Porzi, Barbara Caputo, Elisa Ricci, Samuel Rota Bulò
International Conf. on Computer Vision (ICCV) 2017 /

Loss Max-Pooling for Semantic Image Segmentation

By Samuel Rota Bulò, Gerhard Neuhold, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2017 /

Online Learning with Bayesian Classification Trees

By Samuel Rota Bulò, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2016 /

Dropout Distillation

By Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder
Intern. Conf. on Machine Learning (ICML) 2016 /