The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes

International Conf. on Computer Vision (ICCV) 2017 /
By Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, Peter Kontschieder

Abstract

The Mapillary Vistas Dataset is a novel, large-scale street-level image dataset containing 25,000 high-resolution images annotated into 66 object categories with additional, instance-specific labels for 37 classes. Annotation is performed in a dense and fine-grained style by using polygons for delineating individual objects. Our dataset is 5x larger than the total amount of fine annotations for Cityscapes and contains images from all around the world, captured at various conditions regarding weather, season and daytime. Images come from different imaging devices (mobile phones, tablets, action cameras, professional capturing rigs) and differently experienced photographers. In such a way, our dataset has been designed and compiled to cover diversity, richness of detail and geographic extent. As default benchmark tasks, we define semantic image segmentation and instance-specific image segmentation, aiming to significantly further the development of state-of-the-art methods for visual road-scene understanding.

More publications

Disentangling Monocular 3D Object Detection

By Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Manuel López-Antequera, Peter Kontschieder
Technical Report, arXiv /

Unsupervised Domain Adaptation using Feature-Whitening and Consensus Loss

By Subhankar Roy, Aliaksandr Siarohin, Enver Sangineto, Samuel Rota Bulò, Nicu Sebe, Elisa Ricci
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

AdaGraph: Unifying Predictive and Continuous Domain Adaptation through Graphs

By Massimiliano Mancini, Samuel Rota Bulò, Barbara Caputo, Elisa Ricci
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

Seamless Scene Segmentation

By Lorenzo Porzi, Samuel Rota Bulò, Aleksander Colovic, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

Deep Single Image Camera Calibration with Radial Distortion

By Manuel López-Antequera, Roger Marı́, Pau Gargallo, Yubin Kuang, Javier Gonzalez-Jimenez, Gloria Haro
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

By Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2018 /

Boosting Domain Adaptation by Discovering Latent Domains

By Massimilano Mancini, Lorenzo Porzi, Samuel Rota Bulò, Barbara Caputo, Elisa Ricci
Conf. on Computer Vision and Pattern Recognition (CVPR) 2018 /

Geometry-Aware Network for Non-Rigid Shape Prediction from a Single View

By Albert Pumarola, Antonio Agudo, Lorenzo Porzi, Alberto Sanfeliu, Vincent Lepetit, Francesc Moreno-Noguer
Conf. on Computer Vision and Pattern Recognition (CVPR) 2018 /

AutoDIAL: Automatic DomaIn Alignment Layers

By Fabio Maria Carlucci, Lorenzo Porzi, Barbara Caputo, Elisa Ricci, Samuel Rota Bulò
International Conf. on Computer Vision (ICCV) 2017 /

Loss Max-Pooling for Semantic Image Segmentation

By Samuel Rota Bulò, Gerhard Neuhold, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2017 /

Online Learning with Bayesian Classification Trees

By Samuel Rota Bulò, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2016 /

Dropout Distillation

By Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder
Intern. Conf. on Machine Learning (ICML) 2016 /