AutoDIAL: Automatic DomaIn Alignment Layers

International Conf. on Computer Vision (ICCV) 2017 /
By Fabio Maria Carlucci, Lorenzo Porzi, Barbara Caputo, Elisa Ricci, Samuel Rota Bulò

Abstract

Classifiers trained on given databases perform poorly when tested on data acquired in different settings. This is explained in domain adaptation through a shift among distributions of the source and target domains. Attempts to align them have traditionally resulted in works reducing the domain shift by introducing appropriate loss terms, measuring the discrepancies between source and target distributions, in the objective function. Here we take a different route, proposing to align the learned representations by embedding in any given network specific Domain Alignment Layers, designed to match the source and target feature distributions to a reference one. Opposite to previous works which define a priori in which layers adaptation should be performed, our method is able to automatically learn the degree of feature alignment required at different levels of the deep network. Thorough experiments on different public benchmarks, in the unsupervised setting, confirm the power of our approach.

More publications

Disentangling Monocular 3D Object Detection

By Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Manuel López-Antequera, Peter Kontschieder
International Conf. on Computer Vision (ICCV) 2019 /

Seamless Scene Segmentation

By Lorenzo Porzi, Samuel Rota Bulò, Aleksander Colovic, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

Unsupervised Domain Adaptation using Feature-Whitening and Consensus Loss

By Subhankar Roy, Aliaksandr Siarohin, Enver Sangineto, Samuel Rota Bulò, Nicu Sebe, Elisa Ricci
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

AdaGraph: Unifying Predictive and Continuous Domain Adaptation through Graphs

By Massimiliano Mancini, Samuel Rota Bulò, Barbara Caputo, Elisa Ricci
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

Deep Single Image Camera Calibration with Radial Distortion

By Manuel López-Antequera, Roger Marı́, Pau Gargallo, Yubin Kuang, Javier Gonzalez-Jimenez, Gloria Haro
Conf. on Computer Vision and Pattern Recognition (CVPR) 2019 /

In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

By Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2018 /

Geometry-Aware Network for Non-Rigid Shape Prediction from a Single View

By Albert Pumarola, Antonio Agudo, Lorenzo Porzi, Alberto Sanfeliu, Vincent Lepetit, Francesc Moreno-Noguer
Conf. on Computer Vision and Pattern Recognition (CVPR) 2018 /

Boosting Domain Adaptation by Discovering Latent Domains

By Massimilano Mancini, Lorenzo Porzi, Samuel Rota Bulò, Barbara Caputo, Elisa Ricci
Conf. on Computer Vision and Pattern Recognition (CVPR) 2018 /

The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes

By Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, Peter Kontschieder
International Conf. on Computer Vision (ICCV) 2017 /

Loss Max-Pooling for Semantic Image Segmentation

By Samuel Rota Bulò, Gerhard Neuhold, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2017 /

Online Learning with Bayesian Classification Trees

By Samuel Rota Bulò, Peter Kontschieder
Conf. on Computer Vision and Pattern Recognition (CVPR) 2016 /

Dropout Distillation

By Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder
Intern. Conf. on Machine Learning (ICML) 2016 /